Faculty	Natural Sciences			
Home Department	Mathematics and Applied Mathematics			
Module Topic	Modern Algebra			
Generic Module Name	Mathematics 321			
Alpha-numeric Code	MAT321			
NQF Level	7			
NQF Credit Value	30			
Duration	Year			
Proposed semester to be offered	Both Semesters			
Programmes in which the	BSc (Mathematical and Statistical Sciences) (3227, 3031)			
module will be offered	BSc (Physical Science) (3233, 3120)			
	BSc (Computer Science) (3221, 3023)			
Year Level	3			
Main Outcomes	On completion of this module students should be able to:			
	 Use their knowledge of the basic theory of groups to 			
	provide examples and counter- examples of various			
	concepts.			
	 Carry out proofs of mathematical statements 			
	 Use new knowledge in unfamiliar but similar situations 			
	Generalize concepts from Groups to Rings			
	Use different methods to test for irreducibility of			
	polynomials.			
	Use the integration of field extensions to prove the			
	Use their knowledge of field extensions to prove the improve the improve the second trip competitions using rules.			
	and compass			
Main Contont	Bart One			
Wall Content	Monnings and operations			
	• Mappings and operations			
	 Introduction to group, inverse, identity, permutation, 			
	symmetry group, subgroup, dihedral group, groups of finite			
	order, groups of infinite order, Abelian group, non-Abelian			
	groups, Cayley tables			
	 Relation, equivalence relation, congruence, division 			
	algorithm, integer modulo n, greatest common divisor,			
	Euclidean algorithm, fundamental theorem of arithmetic.			
	Fermat's Little Theorem			
	Group proportion generator order of an element direct			
	product cosets Legrange's theorem properties of group			
	product, cosets, Lagrange's theorem, properties of group			
	Homomorphism, isomorphism, finite and infinite cyclic			
	group, isomorphism of cyclic group, subgroup of cyclic			
	group, Cayley's theorem, normal subgroup, kernel, range			
	 Quotient group, fundamental homomorphism theorem, 			
	consequences.			
	Part Two			
	 Rings, integral domains, subrings, fields, isomorphisms, characteristic 			
	Ordered integral domains, the integers, field of quotiente			
	field of rational numbers			
	Ordered fields, field of real numbers, field of complex			
	numbers, complex roots of unity			
	 Polynomial, division algorithm, polynomial factorisation, 			

	 unique factorisation domain Ring homomorphism, ideal, quotient ring, quotient ring of F[X). factorisation and ideal Field extension: adjoining root, finite field; polynomial equation: polynomial root, rational root, conjugate, introduction to Galois theory Impossible geometric constructions. 				
Pre-requisite modules	MAT221				
Co-requisite modules	None				
Prohibited module Combination	None				
Breakdown of Learning Time	Hours	Time-table Requirement per week		Other teaching modes that does not require time-table	
Contact with lecturer / tutor:	39	Lectures p.w.	2	Practicals – every	
Assignments & tasks:	60	Practicals p.w.	1	alternate week	
Practicals:	27	Tutorials p.w.	0		
Assessments:	12				
Self-study:	162				
Total learning time:	300				
Method of Student	Continuous Assessment (CA): 70% Final Assessment (FA): 30%				
Assessment	Final Ass	essment (FA): 30%			